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The electron-phonon interaction in ternary mixed crystal of zinc compounds is studied. The electron-phonon interaction 
Hamiltonian including the unit-cell volume variation in ternary mixed crystals is obtained by using the modified random 
element isodisplacement model and Born-Huang method. The polaronic self-trapping energy and renormalized effective 
mass of ZnSexTe1-x, ZnSxSe1-x and ZnSxTe1-x compounds are numerically calculated. It is confirmed theoretically that the 
nonlinear variation of the self-trapping energy and effective mass with the composition is essential and the unit-cell volume 
effects cannot be neglected except the week e-p coupling. The deducting dimension of the mixed crystal strengthening the 
nonlinearity and volume effects. 
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1. Introduction 

 

Due to the parameters, such as the band-gap energy 

and the optical-phonon frequency, can be controlled by the 

composition ratio x. The mixed crystals are very important 

materials for many electronics and photo electronic 

devices. Then the lattice dynamics of ternary mixed 

crystals (TMCs) has been maintained interests in the past 

decades [1-7].  

As was known, the electron-phonon (e-p) interaction 

is also very important in determining the electronic and 

optical properties of TMC systems. The characteristics of 

phonon mode in TMCs are different from those in binary 

crystals [1]. There are two branches of phonon frequency 

for either longitudinal optical (LO) or transverse optical 

(TO) modes in TMCs. The electron-phonon  coupling of 

the two branches of LO modes has been investigated and 

the corresponding e-p interaction Hamiltonian has also 

been derived [8-10].  

It has been confirmed that the obvious nonlinearity of 

the polaronic energy and effective mass varying with the 

composition ratio of the TMCs have been found in the 

previous work [9-11]. The unit-cell volume effects cannot 

also be neglected except for the weak e-p coupling TMCs.  

In this paper, we provide a comparision of the 

electron–optical-phonon interaction in three dimensional 

(3D), two dimensional (2D) and one dimensional (1D)  

mixed crystals, and the effect of unit-cell volume variation 

will be taken into account. The Fröhlich-like Hamiltonians 

for the e-p interaction are obtained with the effect of the 

unit-cell volume variation. The compositional dependence 

results of the polaronic self-trapping energies and 

normalized effective masses in zinc TMC systems are 

numerically performed. 

 

2. 3D, 2D and 1D e-p interaction Hamiltonians 
 

The e-p interaction in AxB1-xC type of 3D TMC 

compounds had been considered based on modified 
random-element-isodisplacement (MREI) model and Born 

and Huang theory [11-13]. Two branches of LO phonon 
modes coupling with electrons were recognized in the 

TMC system, whose frequencies were determined as 
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The above dynamical coefficients ijb   , 1,2,3i j   

and related parameters had been listed in Refs. [14] and 

[15]. 

A Fröhlich-like Hamiltonian for the electron coupling 

with the two branches of LO-phonon modes in the 3D 

TMC system had been derived in ref. [10] 
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The n = 1 and 2 corresponding respectively the higher 

and lower frequency of the LO-phonon branches. The 

parameters Bs are represented as following 
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here the matrix elements Tij can be found in ref. [16]. 

The e-p system Hamiltonian in 3D TMCs can finally 

be obtained as 
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To derive the 2D e-p interaction Hamiltonian in 

TMCs, one can divide the phonon wave-vector into xy- 

and z- components, i.e. ( , )zk q k  [16]. Then the 

Fröhlich-like Hamiltonian of e-p interaction in TMCs is 

rewritten as 
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The   in above equation express the electron’s 

position-vector in xy-plane. 

Summing 
2

znqkG  over kz independently to equation 

(5), the 2D e-p coupling function can be obtained as 
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The 2D e-p system Hamiltonian can then be written 

as 
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Similarly, the 1D e-p coupling function can be 

derived by summing 
2

znqkG  over q independently 
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The Hamiltonian of a 1D e-p system can finally be 

written as 
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 3. 3D, 2D and 1D polaronic energy 

 

The intermediate coupling polaronic energy in a 3D 

TMC system can be generally calculated by the LLP 

variational method [17], for instance, the polaronic energy 

can be given as [10] 
2

2
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where the trE express the self-trapping energy and can be 

derived as: 

1 1 2 2tr L L L LE      ,            (11a) 

the renormalized effective mass m is given as 

 

 1 21 / 6L Lm m       .       (11b) 

 

In following, we extend the LLP variational method 

to calculate the polaronic energy in the 2D TMC systems.  

Carrying out two unitary transformations and 

performing the suitable variational treatments, the 2D 

intermediate coupling polaronic energy in TMC system 

can be obtained as 
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in single phonon approximation. The η in above can be 

obtained as 
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and the dimensionless e-p coupling constant nL  is 

defined as 
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The electron band-mass is represented by a linear 

interpolation as: 

(1 )A Bm xm x m   ,                       (15) 

where the electron band-masses of materials AC and BC 

are expressed by mA and mB, respectively. 

The  polaronic energy in 2D TMC system can finally 

be written as 
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where the self-trapping energy and the re-normalized 

effective mass of polaron in 2D TMC system are given by 

the following equations: 
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In accordance with the same treatment, the self-

trapping energy and the re-normalized effective mass of 

the polaron in 1D TMC system are given by the following 

equations: 
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4. Numerical results and discussions 
 
The variational computations for the polaronic self-

trapping energies and re-normalized effective masses in 

3D TMC systems of ZnSexTe1-x, ZnSxSe1-x and ZnSxTe1-x 

are numerical performed by using Eqs.(11a) and (11b). 

The volume variations of the two-ion unit-cell are included 

in the calculations. It can be obviously found the self-

trapping energies and re-normalized effective masses 

varying nonlinearly with the composition ratio x of the 

TMCs in Fig. 1. Except for the TMCs formed by small 

mismatch binary compounds, such as ZnSxSe1-x system, 

the volume effect can not be ignored.  

 

Fig. 1.  Self-trapping energies (in units of meV) and 

renormalzied coefficients m m of 3D polarons with 

(solid) and without (dashed) involving unit-cell volume 

effect   as  functions of  x  for  TMCs:  (a)  ZnSexTe1-x,  (b)  

                              ZnSxSe1-x, (c) ZnSxTe1-x 

 

The 2D and 1D results of the polaronic self-trapping 

energies and re-normalized effective masses varying with 

the composition ratio x are illustrated in Figs. 2 and 3 

respectively by using the Eqs.(17) and (18). It can be 

found the the larger flexures of the curves corresponding 

self-trapping energies and re-normalized effective masses 

of the polarons varying with the composition ratio x in 2D 

TMC respectively in Fig. 2. It is due to the deducting 

dimension of the TMCs strengthing the e-p interaction and 

lattice mismatch of two binary materials. The results are 

consistent with common sense expectations. So that the 

more obviously nonlinearity of self-trapping energies and 

re-normalized effective masses varying with the 

composition ratio x can be inferred in case of 1D TMCs. 

The expected curves are shown in Fig. 3. The unit-cell 

volume variation on the compositional dependence of the 

polaron effects cannot be neglected generally, for instance 

of ZnSexTe1-x and ZnSxTe1-x.  

Fig. 2.  Self-trapping energies (in units of meV) and 

renormalzied coefficients m m of 2D polarons with 

(solid) and without (dashed) involving unit-cell volume 

effect  as  functions  of  x  for  TMCs: (a)  ZnSexTe1-x,  (b)  

                              ZnSxSe1-x, (c) ZnSxTe1-x 

Fig. 3.  Self-trapping energies (in units of meV) and 

renormalzied coefficients m m of 1D polarons with 

(solid) and without (dashed) involving unit-cell volume 

effect   as   functions   of   x   for  TMCs:   (a)   ZnSexTe1-x,   

                  (b)ZnSxSe1-x, (c) ZnSxTe1-x 
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5.  Conclusion 
 

The computed results of the polaronic self-trapping 

energies and renormalized effective masses for 3D, 2D 

and 1D zinc TMC compounds are numerically performed. 

It is verified that the polaronic self-trapping energies and 

renormalized effective masses varying nonlinearly with 

the composition x in both 3D, 2D and 1D zinc TMCs. The 

effect of the uint-cell volume variation on polaron effects 

as funcitions of  composition ratio cannot be neglected 

generally, except for the zinc TMC compounds with very 

small lattice mismatch and very weak e-p coupling. 
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